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ABSTRACT 

An approximate linearized model for the analysis of low frequency transient and stationary planetary scale 
atmospheric wavcs is derived. The problem of stationary waves forced at thc lowcr boundary is solved cxactly for 
an atmosphere in constant rotation by making usc of thc recent tidal theory analysis of Longuet-Higgins, and this 
solution is then compared with the solution of the approximate model equation. Thc approximate model is found to 
describe the Rossby wavc modes with littlc crror away from thc Tropics. Thc cigenvalues of the approximatc model 
arc in good agreement with the eigenvalues of thc exact model with the exception of eigenvalues of thc lowest lati- 
tudinal modes. It is concludcd that thc model will bc suitable for thc purposc of linear theoretical analysis of thc 
vertical propagation of planctary Rossby waves in the prcsencc of zonal wind shears. Assuming an  atmospherc in 
constant angular rotation and assuming wcsterly zonal wind velocities of thc magnitude of the maximum winds 
observed in the midwinter stratospheric jet, thcrc will always bc two or morc planetary wavc modes that can propa- 
gate vcrticnlly. The constant angular wind vclocity inodcl is used togcthcr with thc amplitudc of observcd stationary 
planctary wavcs in the wintcr lower stratosphcrc to  prcdict the Inngnitudc of planctmy W:LVCS at thc mctcor wind 
lcvcl. Bccausc thc amplitude of thc eddy winds so prcdictcd cxcccds obscrvcd valucs by at lcast an  order of magnitndc, 
wc infcr that  horizontal wind shcars and possibly also dinbatic damping nccd bc considered for thc description of 
the propagation of planctary wavcs from thc troposphere to  thc lowcr thcrmosphcrc. 

1. INTRODUCTION zonal mind and also along lines defined by some strength 
of a westerly zonal wind, so that there is wave propagation 

Stationary and low frequency-transient eddy winds of only in weak westerly zonal ,,,in& (Charney and ~~~~i~ 
planetary scale dimensions are escited in the earth’s [3]). Hence near the solstices vertical propagation in tho 
:Ltmosphere ns iL conseqiieiice of vertical motions forced stratosphere llnd mesosphere will be primarily confined 
by continent-ocean thermal contrast or by flow of zoniil to the equatorial wave guides in regions where 
winds over the idanetary Scale components of the earth’s westerlies do occur (Dickinson 141). present 
topography (cf. Saltzman 1171, Snnkar-Rm [201, ilnd observational evidence demonstrates the realizatiorl of 
earlier references given in these papers) and are modified in wave guide to the present upi)er 
by interaction with cyclone scale motions (cf. Saltzman limit of synol,tic meteoro~ogica~ datn at the stratopause 
and Flelscher [IS]). As :I result of the earth’s variable pinger, Wooif, and Anderson [6]), \j,hile rocket grenade 
vertical component of vorticity these winds can ~irolia- data (Nordberg et [I411 aIld meteor wind data (Newell 
gate as waves, and hence a source confined to one latitude presence of planetary 
a t  the ground may excite motions a t  great heights and in scale eddy motions at least ul, to the mesopause. 
both hemispheres. The \\-iLves associated with such motions The detailed tileoretical explanation of tl1e observed 
of hime Scales of SeVeral days 01‘ longer are Strollgly re- motions will depend 011 satisfactory resolutioii of two 
fracted by variable zonal 11 inds. There :ire turning points questions: 1) \\That are the energy sources for the observed 
of the nondissipative wave equation along lines of zero eddy motions? 2) what are the transmission character- 
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such 

and Dickinson [131) indicate 
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istics of the atmosphere for arbitrary sources? Because 
observed motion phenomena may be rather far removed 
in space and time from the actual energy sources, it 
would appear that the latter question need be answered 
first. For this piirpose, i t  is necessary to select a suitable 
mathematical model for such atmospheric motions. 
Quantitatively accurate analysis will undoubtedly re- 
quire numerical models, but it seems first desirable to 
study analytic models to understand better the relevant 
dynamical processes and to obtain preliminary rough 
estimates of the magnitudes of various effects. Because 
of the wide latitudinal extent of the motions of interest, 
it appears that  a highly desirable property of such models 
would be that they be valid on a sphere. On the other 
hand, because of the apparent great importance of hori- 
zontal and vertical shears, it is also desirable that the 
model's not be completely intractable when shears are 
included. 

One purpose of the present paper then is to formulate 
an approximate theoretical model which appears to sat- 
isfy the above criteria. In  order to obtain the equations 
for this model, we follow the standard procedure of de- 
riving a vorticity equation and a divergence equation, 
then using the divergence equation to express geopotential 
in terms of a stream function. The approximate spherical 
earth model obtained here is similar to that discussed 
by Kuo [8], except for the linearization of the present 
paper. There is no indication in earlier works of the errors 
that  might be expected to result from using the approx- 
imate model to study planetary waves. 

The equations defining the model are derived by means 
of a scale analysis valid away from the Equator and for 
assumed scales appropriate to disturbances in the winter 
upper stratosphere. In  order to verify the validity of the 
approximations made in deriving the proposed model, we 
investigate the solution to the problem of the vertical 
propagation of stationary waves forced a t  a spherical 
bottom boundary for an atmosphere in constant angular 
rotation. It is now possible, following the definitive ana- 
lytic and numerical tidal theory study by Longuet- 
Higgins [lo], hereafter referred to as LH, to solve emUy 
for this special case the linearized vertical propagation 
problem. Comparison is then made between the ezact 
solution for an atmosphere in constant angular rotation 
and the solution given by the approximate model. By 
this means we establish for middle and high latitudes 
that the terms neglected in order to derive the approx- 
imate model can be omitted with errors negligible com- 
pared to other uncertainties that  will arise in any realistic 
application of the theory to the atmosphere. 

Our discussion here of the problem of vertical propaga- 
tion for an atmosphere in constant rotation is also intended 
to serve as the introduction to a general linear theory of 
vertical propagation in an atmosphere with arbitrary 
horizontal and vertical shears. The present paper, Dickin- 
son [4],  and further studies in progress extend in various 
ways to more realistic models, the analysis of Charney 

I 

and Drazin [3]. We seek to gain further insight into the 
basic dynamics of planetary wave motions and to provide 
a conceptual framework on the one hand for related obser- 
vational studies and on the other hand for the formulation 
and solution of numerical models for such motions. 

Because of the current dearth of hemispheric data on 
winds and temperatures above 10 mb., the construction 
of numerical models is now essential to the computation 
of the vertical motions associated with planetary scale 
geostrophic eddy motions in the mesosphere and above. 
These vertical motions are presently required for the in- 
terpretation of the distribution of various atmospheric 
trace substances at  these levels. 

2. FORMULATION OF THE MODEL 
The following basic notation is used: z=log (po/p)  

where p=presssure, po= lo3 mb., u=eastward velocity, 
v=northn-ard velocity, w=dz/dt, h=geopotential height, 
T= temperature, t= time, h=longitude, q=latitude, 
Q=frequency of earth's rotation, a=radius of the earth. 
Let 

Z=2n sin p+(a COS p)-'(&/ax-a/dp(u COS p)) 

be the vertical component of absolute vorticity. Then the 
primitive equations on a spherical earth may be written 

(1) 
au g a u*+va *-zv+w- at  
a2 +- a cos p a ~  @+-2; j - )= -~ (z )  

@+ZU+W$+~ at a%+u$$f)=-pp) (2) 

aT vaT aT a T , u  at a c o s p  -+- ax a a p  - + ( z + K ~ ) w = ~ / c ,  

-(vcosp)+--w=o +- au 
a COS pax a COS ~p ap 

ah 
aZ 

(3) 

( 4 )  
i a  h 

a2 

g-=RT ( 5 )  

which are the equations of motion, thermodynamics, 
continuity, and hydrostatic balance, respectively. We have 
used F@) ,  F(u) to denote the forces in the X and (D directions, 
and Q to denote the rate of heating per unit mass. Also 
R=gas constant, c,=specific heat a t  constant p ,  K=h?/Cp. 

The assumption of hydrostatic balance has been made to 
derive (1)-(5). Our development is similar to the usual 
formulation of dynamic meteorology (cf. Phillips [i5]). 

Averages of a dependent variable over longitude and 
latitude and deviations from these averages are defined by 
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so we have t,he decomposition 

In order to determine which terms of the exact nonlinear 
equations may be neglected, we shall make the scaling 
assumptions 

T'-6T' u', dl V-6Z 

where 6 is a small parameter. 

we shall introduce nondimensional variables by setting 
Now for the purpose of simplification of the analysis, 

t='i/2Q u' =28aii ?i=2Qau 

v' =28a; w'=2Q22, gh' = ( 2 ~ a ) z i l  

R T' = (2 Oa) * p  
~ ( 2 )  '= (2  fi)zaF(z) 

Kv=(20)3azQ 

F(Y)'= ( ~ Q ) Z ~ F ( Y ) .  
CI w 

'e define a nondimensional static stability 5 by 
- -  g = (2 Oa)-zR( K T +  T,) . (7) 

Note the thermal wind equation 

We shall use further notation u=cos p, r = s i n  p, and take 
Z=[p-u-l(uU),] to be the zonally averaged vorticity. We 
use (7)-(8) together with (5) and (6) and our scaling as- 
sump tions to write (1)-(4) in nondimensional, linearized 
form as 

w 

a~ a(u;) a~ - 
uax uacp aZ -+-+--w=o. 

Subscripts are used when convenient to indicate differenti- 
ation with respect to the subscript. The system (9)-(12) 
is general enough to describe any hydrostatic perturbation 
motion occurring on a spherical earth in the presence of 
geostrophically balanced mean wind. 

We can follow Saltzman [16] in assuming that, if 
necessary, one may obtain observationally the nonlinear 
terms omitted in (9)-(11) and include these as empirical 

forcing junctions. It has been found t,hat the tropospheric, 
middle latitude, mean asymmetric motions are forced 
primarily by external heating and boundary effects and 
that the observed empirical forcing functions due to non- 
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linear transient terms are largest in high latitudes, ranging 
in magnitude from an order of magnitude smaller to as 
large as the external forcing functions (Saltzman and 
Sankar-Rao [19]). Taking the viewpoint of Saltzman, we 
assume that $z), $ u ) ,  and may be modified to include 
the nonlinear terms omitted from the left hand side. 

For further discussion i t  is convenient to write (9) and 
(lo) alternatively as a vorticity and divergence equation. 
Let A=a2/ap2- P / U  a/ap+ a-2a2/axz be a Laplacian 
operator, v., V be divergence and gradient operators, re- 
spectively, on a unit sphere. Following Love [12] and many 
later authors, we introduce a stream function 5/ and 
velocity potential into the above system by substituting 

After taking curl and divergence of (9)-(10) arid omit- 
ting t.he external forcing, we may write the result as 

where we define the linear operators 

a =(;+; a u a  &+z,x - a  
at 

J=v ' zv. 
The discussion is now restricted to planetary scale, 

quasi-geostrophic motions. The purpose of the remainder 
of this section will be to derive from the exact perturbation 
model obtained above an approximate model which is 
suitable for the analysis of planetary scale Rossby wave 
motions away from the Equator. We can gain little 
physical insight into the nature of Rossby waves propa- 
gating through actual zonal winds from the exact model. 
Furthermore, the numerical solution of the exact model 
appears to be a formidable task. 

First let us introduce scaling assumptions essentially 
equivalent to those of Burger [2] and then see what 
modifications are necessary in order to obtain scaling 
appropriate to observed planetary waves in the strato- 
sphere. The stability S is assumed to be proportional to 
a small parameter 6. (In the upper stratosphere S is 
typically 0102 to 0.03) We shall also assume that the mean 
wind is smaller than 2Oa by a11 O(6) factor, so that U 
is proportional to 6. 

Let us define u stretched time variable *t by taking 
;=Si and assupe that motions do not change significantly 
for changes of t less than O( 1) .  That is, we are considering 
quasi-geostrophic motions with frequencies typically 6 
times the earth's rotational frequency or less. All depend- 
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ent variables are taken to be of the same magnitude. 
Equations (15) and (16) can then be written as 

where A and B are terms which for Burger scaling are 

O(1). If we define the linear operators ,J and a by 
A A 

A 

B =-v (u-yuu),v, 
then me may write A and B as 

Modifications of the above Burger scaling to be used 
for planetary waves in the winter stratosphere are deter- 
mined by the facts that:  a) zonal wind systems and 
planetary waves are confined in latitude to less than one 
hemisphere rather than extending pole to pole; b) the 
zonal velocities are somewhat stronger than meridional 
velocities. A scaling consistent with these facts is obtained 
by taking 

p=o(i), aQ-sllzl ;-Pc, G-PG-; 

where a(p formally denotes the latitudinal disturbance 
scale. Writing (12) as 

we see that &-6+ so the motion is nondivergent with 
O(6) error. The scaling is not valid for latitudes or 
less from the Equator. A more detailed 8-plane analysis 
of the above scaling is given in Dickinson [5]. 

Let LY denote twice the atmosphere’s angular rotation 

ff=2u/Cos Q (18) 

so that the total vertical component of vorticity diie to the 
angular rotation of earth plus atmosphere is (2Q+a) sin cp. 
We uish to derive a system of equations that are valid 
for large tingiilar rotation of the ntmosphere, that is 
a= O( I ) ,  assuming, holyever, that the horixontnl and 
vertical shears, (U/u), and U,, respectively, are O(8). 

The assumption that latititdind scales are 0(8/*) does 
not here justify a p-plane model. Also note that terms 
with cos cp=u in the denominator will not necessarily be 
negligible when shown small by scaling since they may 
become large near the poles. Keeping the above criteria 

in mind and using the modified planetary wave scaling 
defined in the previous paragraph, we approximate (15) 
and (16) by 

(194  

with errors of 0(P2). T o  arrive a t  these equations, we 
have approximated the operator J by V (l+a!) V and 
have omitted all terms involving velocity potential or 
derivatives of a! in (16). 

One further simplification that is permissible for 
p= O(1) is to take the factor (1 + a!)p outside the divergence 
operator in the last term of the first equation and the 
same factor inside the gradient operator in the last term 
of the second equation. These approximations are made 
jointfly so as to retain equations that are energetically 
consistent (Lorenz [ll]) and can be justified by noting 

~. 

We then have 

The Laplacian operator in the second equation of 
(19b) has been dropped on the basis of the following 
argument. Given that the region of integration is the 
entire sphere, and taking x=h- ( l + a ) p $ ,  we have that 
Ax=O implies x = O ;  that is, the nonsingular homogeneous 
solution to A+=O is a constant and since the perturbation 
height vanishes a t  the pole, this constant must vanish in 
order that d l  be nonsingular a t  the pole. In 
the remainder of this paper, me refer to (19b) as the 
approximate model. 

3. EXACT NORMAL MODE WAVE 
PROPAGATION THEORY FOR 

AN ATMOSPHERE IN CONSTANT ROTATION 

We have obtained ail exact perturbation system for 
~1 tmospheric motions in the presence of arbi trary zon:d 
Iviiids (i.e. (9)-( 12)) :)rid by scale analysis an  approxinirite 
system &e. ( I  1) and (19b)). We shall discuss in this 
section the solutions of the exact equation for a specid 
case, that is \\-hen U / U ,  the angular zonal wind, is constant. 
For this special case, the system (9)-( 12) , describing 
exactly linearized hydrostatic atmospheric motions, be- 
comes tractable without further approximation. Solutions 
to the exact equat.ions are formally obtained in this 
section as a sum over the discrete Hough function nornliil 
modes tabulated by LH. The coefficients of the expansion 
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are obtained by solving a Sturm-Liouville equation in 2. 
In the next section, the approximate solution obtained 
from (19b) is compared with the results of the exact 
solution so as to gain a better understanding than can be 
given by scale analysis alone of the errors which may 
occur in using equation (19b). 

Assume now that the angular rotation of the atmosphere 
and hence a, defined by (18), is constant, that eddies are 
independent of time, and that forcing occurs only ut 
boundaries. Let subscripts denote partial differentiation 
with respect to the subscript. Nen- nondimensional de- 
pendent variables are now defined using (1 + .)-' 
rather than (2Q)-l as characteristic time and are written 
mit,hout tildes. That  is, let 

G = ( l  + a ) ~ ,  C=( 1 + a ) ~ ,  #= (l+a)#, h= ( I f a ) * h ,  
L 

- 
G = ( 1 +a) e 2'2Y, S= ( 1 + a)'S. 

The strength of the mean wind mill be described by the 
nondimensional parameter E =  4 2  (1 +a). We then may 

The parameter S is taken to depend only on z .  
We shall assume a t  some isobaric surface, z=zo 
(which may be taken to be a bottom boundary), that 
boundary condition of the form Y= Wo (X,p) is imposed, 
and that a t  an open upper boundary a radiation condition 
is imposed. We nom separate variables in the system 
(20)-(23) by expanding solutions into sums over lati- 
tudinal eigenfunctions. To do this, consider the system 
of differential equations 

EVA+ pu+h,=O (24) 1 e~x-pv+  o-'hx= O 

c~-'Ux + Q- ( aU) , yehh= 0 

For fixed e and for solutions regular a t  p = & l ,  (24) 
defines an eigenvalue problem which has solutions for 
h=h(A,p), only for a discrete infinity of values of the 
eigenparameter y .  Assume that h is given by the product 
of an eigenfunction of (24) and a function of only 2.  

Substitution of (24) into (20)-(23) then separates variables 
and gives the z dependence of solutions to be defined by 
the Sturm-Lioiiville system 

(25) 
eh,x+Se'/2Y=0 

Y ,  - +Y - ye e-L/2hA=0 

We expand the boundary condition Wo(X, p) and the solu- 
tion Y(X, cp, z )  as a sum over normal mode solutions to (24) 

where y e i r n X  is an eigenfunction of (24) taken to be an 
equation for h, with eigenvalue denoted 77, and indi- 
cates summation over all eigenfunctions for a given m. 
Then by (25) the coefficient c ( z )  satisfies 

YT 22 + (778 - W Y = O  (27) 

I 

with boundary condition a t  z=zo, Y';(zo) = Wl;. 
The normal mode solutions of (24) for h, that is the 

Hl;(p,yl;) ,  are called Hough functions, after Hough [7]. 
The corresponding eigenvalues may be accurately eval- 
uated and qualitative features of the eigenfunctions may 
be ascertained with little labor by use of the LH paper. 
Figure 1 plotted from the LH tables illustrates the 
7: (e) wave number one spectrum for 0 I l e l < X .  We 
should note here that E multiplied by wave number m 
corresponds to frequency in the LH theory, with e>O 
corresponding to the westward propagating modes of 
LH. Shown are the first four modes for each branch of the 
spectrum. As the parameter l e \  ranges from zero to one- 

FIGURE 1.-The dependence of the  Hough function eigenvalues y 
on the  zontal wind e for the first four modes of each branch of 
the spectrum and for 0 < ~ 1 > / 2 .  The right hand side shows thc 
spectrum of stationary waves in a westerly flow (traveling west- 
ward relative to  thc mcan wind). 
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The Hough functions are orthogonal; the boundary 
conditions may be projected onto the gravity wave and 
Rossby wave modes by  standard procedures. For a given 
e and for (ml < l / l e l ,  the summation in (26) is over both 
the Rossby wave modes, with eigenvalues denoted yy(,, , 
j 2 (mi, and the gravity wave modes, with eigenvalues 
denoted yyCu,, j r  (mi, while for Im( > l / l e l  the slim is 
over only the gravity waves. (Stationary disturbances 
\vi th m = correspond to semidiurnal oscillations in  
tidal theory.) The amplitude of each mode away from 
the boundary is then given by the Sturm-Liouville equii- 
tion (27). Then h is obtained from Y by (25) and ic and 
v from (24) giving 
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I ,  ~, . I I  , , , I , -  

.05 .IO .I5 € - 
FIGURE 2.-The dependence of dimensional zonal wind at 45’N. 

on the nondimensional parameter e over the range of values 
possibly realized in the stratosphere. 

half, the solution given by (26) describes waves stationary 
in longitude propagating vertically through zonal winds 
ranging in speed from zero to infinity. Figure 2 gives the 
conversion from e to the mean zonal wind U a t  45’ of lat. 
I t  may be shown following LH that for t<l fm, there are 
two sets of points in the spectrum of equation (24), II 

gravity wave and a Rossby Ivnve branch. We shall denote 
t.he respective eigensoliitions Hy,,, ( p )  and IZ:(?) ( p ) .  

The integers j 2 m  may be chosen so thiit as ~ 3 ~ 0 ,  

( p ) + P y ( p ) ,  and a s  y“+O, the stream funct.ion $ 
or (TU of the H’;”,,, ( p )  mode becomes proportionid to 
c ( p ) ,  where the P’;”(p) tire associated Legeridre poly- 
nominls. Tt is reveiiled by the iiiinlysis of LH thiit i i s  ym- 00, 

for e>O (n-esterly winds) the j=m Rossby \vuve mode is 
not  quasi-geostrophic but riither becomes IL divergent 
grii\iity wave, and for E<O (easterly ninds) tlie j=m 
gravity \\.ave, called the “Kelvin lvave,” unlike the other 
gravity waves has geostrophic zonal winds. See LH for 
further details. 

f 1 

This formally completes the exact solution. l n  the next 
section we iinalyxe the approximate model and disciiss 
its error. 

4. APPROXIMATE NORMAL MODE 
WAVE PROPAGATION THEORY 

FOR AN ATMOSPHERE IN CONSTANT ROTATION 

In this section u-e consider the “ti1)proxiniilte model,” 
(lgb), iiiider the assuniptions of  section 3 t h t  a is i~ 

constiint and that motions are independent of time. 
Then using the definitions preceding (20), (19b) re- 
duces to 

(ea+ l )$A-peZ/2( Y,- ay) = 0 (29) 

p$-h=O. (30) 

Eqiiations (29) and (30) are to be considered an iipproxi- 
mation to (20), (21), iind (23). The system (29), (30) 
is closed with (22). We no\v again express soliit,ions :is 
slims over liitititdinal eigenfiinct,ions. 

Let K y ( p ,  $:(E)) be ti11 eigenfunctivn of tlie eqiintioii 

m2 1 (31) [(I  - P 2 ) $ p 1 p - j 7  $+; $-p211C=O 

witch eigenviiliies denoted -y=G:(t). We se11iir:ite variiibles 
for t,he systems (22), (29), iind (30) by expimding # n i i d  

Y in the eigenfiirictions of (31). 
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I l l  

1 
1 
1 
1 
2 
2 
2 
3 
3 
4 
5 

41 1 

The exact The 
3 model approximate 

model 

1 1583.0 400.6 
2 77.2 83.2 
3 43.2 44.8 
4 27.0 28.8 
2 144.9 125.0 
3 49.2 50.3 
4 29.6 30.0 
3 62.4 59.3 
4 31.9 
4 35. 5 
5 23.1 

__ 

Substituting (32) into (29), and eliminating $ and h 
by (30) and (22) reduces (29) to 

which, except for the constant $:, is the same as equation 
(27). We then obtain from (29) and (31) that 

(34) 

Using (13) and (14) we obtain $ the nondivergent com- 
ponent of the perturbation wind, which is total wind 
with error O(6lt2) .  

The K;"(p, $7) are prolate spheroidal wave functions 
for +; l>O,  and oblate spheroidal wave functions for 
+?<O (cf. Abramowitz et al. [l], p. 752). We are here 
interested in propagating modes, for which necessarily 
+;">O, so we need consider only the prolate spheroidal 
wave solutions. We identify each Ky(p, $7) ivitli a cor- 
responding Hough function Hy(p, 77) by the fact that 
K;" and the stream function of the H;I mode approach the 
associated Legendre polynomial Py(p) as $ p O ,  p + O .  
There is thus a one to one correspondence between the 
K;" andthe Rossby wave mode Hough functions. 

Since it is not presently possible to solve the exact 
system (9)-(12) when the mean wind has horizontal and 
vertical variability, comparison between the Km( ) and 
H;l(p), the approximate and exact solutions for winds in 
constant angular rotation, can be used for guidance in 
evaluating the possible errors that may result from 
using the approximate model (19b) for more general 
wind shears. For the present problem, use of (29) and (30) 
rather than the exact equations introduces three kinds of 
errors into the description of vertical propagation of 
motions, which we denote (a) distortion, (b) transmission, 
and (c) omission errors. 

Distortion errors result from the fact that for identical 
bottom boundary conditions, the amount of W0(x, cp>,  
the forcing a t  the lower boundary, that projects onto the 
HT mode will be somewhat different from that which 
projects on the K;" mode. This we call amplitude error. 
Also, the eigenfunction variables will have somewhat 
different latitudinal dependence for the approximate 
model than for the exact model. This we call shape error. 
Transmission errors occur because +;" differs somewhat 
from 7;" for a fixed zonal wind. Consequently, the cutoff 
value for westerly winds, above which there will be no 
energy transmission, will be somewhat different for the 
approximate versus the exact model. Omission errors 
occur because some of the gravity wave modes of (24) 
which do not correspond to any of the modes of (31) may 
propagate energy vertically. 

' !  

These errors are now discussed in greater detail: 
u) Distortion errors: For comparison of the exact and 

approximate h's, the approximate model relation (19b) 
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E ~ G U R E  3.-Several of the eigenfunction geopotentials H y ( p )  vs. 
p K y ( p )  r=+= 10. The normalization is arbitrary. 

tioned sources and plotted in figure 4. The ratio of an 
exact to an approximate eigenvalue can be used to 
measure the error of the approximate eigenvalue. It is 
seen that the ratio of y: to $; and the ratio of 7; to $2" is 
close to unity for small E but monotonically increases with 
E. On the other hand, for j>m the ratio of yy to $7 
approaches unity for both small and large E ;  yi  exceeds 
$i by less than 5 percent for all E. The reasonable agree- 
ment between the exact and approximate eigenvalues for 
ySO(6-l), even when the eigenfunctions do not agree in 
tropical latitudes, can be ascribed to the fact that the 
term in the horizontal structure equation which may be in 
error by O(1)  n-ithin 0(6$*) of the Equator is then only of 
amplitude 6 compared to other terms in the equation. 
The deterioration of the approximations for the j=m 
mode and for E >> 6-' is a consequence of the breakdown 
of the approximate model for this mode as the vertical 
wavelength becomes much smaller than that assumed 
by our scaling, and its divergence becomes as large as its 
vorticity. The higher modes are still satisfactorily de- 
scribed by the approximate model for large e because they 
remain quasi-nondivergent in nature as their vertical 
wavelengths become much smaller than is assumed by 
the scaling. This distinction between the lowest modes 
and the higher modes manifests itself in the asymptotic 
behavior of the eigenvalues y; that is, the y{(~)  decays 
as like a gravity wave, while the other yr decay as 
e-$'. (See LH.) 

c) Omission errors: For zonal Jvind strengths commonly 
observed in the st*ratosphere, figure 2 shows that ( € 1  I 0.15. 
It may be inferred from figure 1 that m=l planetary 
scale stationary gravity waves for westerly winds and for 
this range of E will have a y of io4, or greater. It follows 
from the asymptotic formulae of LH that such gravity 
waves n-ill be trapped within 10' or so from the Equator 
and will have exponentially small amplitudes in middle 
and high latitudes. The same conclusion holds for the 
higher wave number gravity waves. Assuming easterly 
zonal winds with the strength of the summer stratospheric 
jet, one finds, however, that the m=l Kelvin wave 
gravity wave d l  have significantly large amplitude out t o  
middle latitudes. 

Since the Rossby wave modes only propagate in 
westerly ninds it follows, according to the constant 
angular wind theory, that practically all easterly wind 
stationary wave vertical propagation away from the 
Equator will be in the Kelvin mode. Gravity wave modes 
can safely be omitted when studying planet8ary waves 
propagating through westerly winds except possibly 
near the Equator. However, the theory of LH suggests 
that there may be significant gravity wave mode, station- 
ary wive propagation of planetary scale in easterly 
zonal winds. 
5. APPLICATION TO VERTICAL PROPAGATION OF 

STRATOSPHERIC PLANETARY WAVES 
The normal mode disturbances for an atmosphere in 

constant angular rotation were discussed in the previous 
sections.  An-tly from tropical la t i tudes  the eigenfunctions 
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FIGURE 4.-The lowest two wave number one and wave number two exact and approximate eigenvalues vs. the zonal wind e .  

of the approximate model (19b) differ little from those 
obtained from exact theory, except that the approximate 
model does not contain the gravity wave modes. The all- 
proximate model predicts eigenvalues with little error 
with the exception of those for the lowest latitudinal 
modes. 

The importance of the various possible modes which 
may propagate into the upper atmosphere is now esti- 
mated as follows. Teweles [21] has computed for January 
1958 the geopotential height amplitudes a t  50 mb. for 
the first four wave numbers. Given a zonal wind z i  with 
angular velocity a constant, the wave number geopotential 
may be expanded in the corresponding Hough functions 
or the approximating spheroidal wave functions. Hence 
the modal amplititdes obtained by projection of Ten-eles' 
data onto the various vertically propagating Hough func- 
tion normal modes can be estimated. 

For example, assume y= 10. In figure 5 are shown geo- 
potentid height mnps obtained by projecting wave niim- 
ber one for January 1958 (taken from Telveles [21]) onto 
the  Hi and H: Hough function normal modes. One may 
infer from the eigenfunction figures of LH that the eigen- 

t 

308-679 0 - 68 - 2 

functions only change slon-ly with the mean wind E, so 
we expect that about the same maps u-odd be obtained 
for zonal winds vnrying from 10 to IO2 m./sec. Referring 
to table 1, n-e see that these two modes propagate ivheii 
a a t  45"N. is less than 77 and 43 m./sec., respectively. 
For stronger winds than these cutoff values, these modes 
will be exponentially attenuated above 50 mb., while for 
zonal winds weaker than cutoff, the eddy geopotentials 
and winds of the resulting propagating mode increase 
above 50 mb. as p-lI2. Thus, the present linear theory 
predicts that a t  5 pb. (S5 km.) the wave number one eddy 
geopotential height amplitiide should exceed 6 km. for 
intervening westerly zonal ivinds of speeds less than 75 
m./sec. and should exceed 20 km. when the intervening 
ii>O does not exceed 40 m./sec. The corresponding eddy 
velocities are several hundred m./sec. or greater. Similar 
cimplitiides u-odd be obtained for the m=2 modes ivhich 
propagate. If \\-e iissiime e nnd S depend only on z ruicl 
tipply n geometric. optics ttl)proximntion, then comparable 
eddy \I ind t1ml)litiides tire found provided the local value 
of the parameter [ Y ( E  (z ) )S(z )  --%I remains greiiter thiin 
zero everyivhere between 50 mb. tlnd 5 pb. 
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FIGURE 5.-The projection of January 1958, 50-mb. wave number one geopotential onto (a) the H : ( p ,  10) Hough function mode and (b) 
the H: (p,  10) Hough function mode. Units are m. 

To continue our results into the Southern Hemisphere, 
we note that the Hi mode is symmetric and the Hi mode 
antisymmetric about the Equator. For the computation 
of amplitudes of these normal modes the Southern 
Hemisphere January 50-mb. wave number one amplitude 
has been assumed to be zero, and small phase shifts with 
latitude of the longitudinal phase have been neglected. 

6. CONCLUDING REMARKS 

In the preceding section, horizontal wind variations 
\\-ere neglected and the zonal winds were assumed to be 
westerly a t  all levels with the observed winter mid- 
la ti tude amplitudes of the upper s tmtospbere. Charney 
and Drazin [3], in applying their model to disturbances on 
a spherical earth by expanding disturbances in spherical 
harmonics, concluded thtit there \\-odd be no propagation 
for zonal winds greater than 38 m./sec. for modes with j 
(the degree of the spherical harmonic) three or gretLter. 
In  comparison, our j = 3  modes (cf. table 1) have cutoff 
velocities of 43, 49, and 62 m./sec. Charney and Drnzin 
hypothesized that the escape of large amounts of planetary 
wave energy could be prevented during the winter by the 
observed large westerly zonal winds above the tropopause 
in middle latitudes. However, we find that strong strato- 
spheric winds are not sufficient to trap planetary \\-aves 
in the lower atmosphere. For an atmosphere in constant 
angular rotation there exist six planetary u-ave modes 
that propagate for ii>33 m./sec. and indeed two modes 
for z i > l O O  m./sec. That  part of the planetary waves ob- 
served in the lower stratosphere which projects onto each 
of these modes has a height amplitude of some tens of 
meters and gives corresponding winds of several m./sec. 

Hence the eddy winds of each propagating mode above 
some level in the lower thermosphere should be in excess 
of hundreds of m./sec. St,ationary winds with these 
velocities are, however, not observed a t  these levels. 

The discrepancy between conclusions obtained by the 
more realistic theory and those obtained by Charney and 
Drazin may be partly explained by noting that the normal 
mode planetary waves on a spherical earth “feel” a smaller 
Coriolis parameter than the middle latitude value assumed 
by Charney-Drazin and that on a spherical earth, signifi- 
cant disturbances of larger horizontal scale than the 
scales they assumed may occur. Their Cartesian model 
indicates that when the Coriolis parameter or horizontal 
wave number is decreased, stationary planetary waves can 
propagate through stronger westerly winds. Furthermore, 
an equatorial &plane model predicts transmission of 
planetary waves through westerlies of any strength (Lind- 
zen [9]). 

It is clear that if the wave amplitudes approaching those 
predicted by the present theory for the lower thermosphere 
were realized, there would be a severe violation of the 
linearization assumption of our model. However, we be- 
lieve that the disagreement between observations and the 
present theory is first of all a result of the neglect of lati- 
tudinal wind variations. Latitudinally variable zonal winds 
can confine a disturbance to limited latitudinal belts, 
greatly reducing the possible vertical propagation of dis- 
turbances (Dickinson [4]). We have also neglected diabatic 
damping of disturbances, which can be important to 
lowest order near the stratopause and hence should also 
necessarily be included for accurate analysis of Rossb y 
waves at this level. 

Because of the decrease of the effective latitudinal scale 
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of disturbances by variable zonal winds, i t  seems likely 
that most of the low frequency planetary wave energy 
will be in latitudinal scales comparable to or smaller than 
the latitudinal scale of zonal nind systems. Provided then 
such zonal u-ind systems have a latitudinal scale of 1 9 ( 6 l / ~ )  
or less, the latitudinal scale of disturbances can be expected 
to be 0 ( a 1 I 2 ) ,  so that the assumptions made to derive (19) 
will be vaild. Equations (19b) provide a satisfactory 
linear model for further study of planetary Rossby waves 
propagating through actiinl zonal wind systems t~way from 
eqiiatorial latitudes. Winds in equatorid latitiides \\-it11 
a long enough time scale will still be quasi-geostrophic biit 
not necessnrily qriasi-nondivergent. The geopoteiitial height 
h rather tBan the stream function #, then becomes the 
most convenient vnriable to use for planetary Ivaves in the 
presence of wind shears. Using this vnriable, one can 
easily generalize the equatorial P-plane model of Lindzen 
[9] to obtain an equation for equatorial Intittides I\-hich 
describes quasi-geostrophic motions in the I)resenc-e o f  
mean horizontal and vertical shears. 
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